
QRAMM | Post-Quantum Cryptography Developer Guide Page 1 of 3

qramm.org | Open Quantum Safe: openquantumsafe.org December 2024

Post-Quantum Cryptography
Developer Quick Start Guide
Implementing NIST PQC Standards with Open Quantum Safe

Overview

This guide covers practical implementation of NIST post-quantum cryptography standards using
the Open Quantum Safe (OQS) project. Focus on ML-KEM (FIPS 203) for key encapsulation and
ML-DSA (FIPS 204) for digital signatures. For production, consult vendor documentation.

NIST PQC Standards Quick Reference

FIPS Algorithm Purpose OQS Name Security Levels

203 ML-KEM Key Encapsulation ML-KEM-* 512, 768, 1024

204 ML-DSA Digital Signatures ML-DSA-* 44, 65, 87

205 SLH-DSA Stateless Signatures SLH-DSA-* Multiple variants

1. Environment Setup
Prerequisites (Ubuntu/Debian)

sudo apt install cmake gcc ninja-build libssl-dev \

 python3-pytest unzip doxygen graphviz

Install liboqs

git clone https://github.com/open-quantum-safe/liboqs.git

cd liboqs && mkdir build && cd build

cmake -GNinja -DCMAKE_INSTALL_PREFIX=/usr/local ..

ninja && sudo ninja install

Install OQS-OpenSSL Provider (for TLS)

git clone https://github.com/open-quantum-safe/oqs-provider.git

cd oqs-provider && mkdir build && cd build

cmake -GNinja -DOPENSSL_ROOT_DIR=/usr/local ..

ninja && sudo ninja install

QRAMM | Post-Quantum Cryptography Developer Guide Page 2 of 3

qramm.org | Open Quantum Safe: openquantumsafe.org December 2024

2. ML-KEM Key Encapsulation (FIPS 203)
ML-KEM replaces RSA/ECDH for key exchange. Example using liboqs C API:

#include <oqs/oqs.h>

OQS_KEM *kem = OQS_KEM_new(OQS_KEM_alg_ml_kem_768);

uint8_t *public_key = malloc(kem->length_public_key);

uint8_t *secret_key = malloc(kem->length_secret_key);

uint8_t *ciphertext = malloc(kem->length_ciphertext);

uint8_t *shared_secret = malloc(kem->length_shared_secret);

// Generate keypair

OQS_KEM_keypair(kem, public_key, secret_key);

// Encapsulate (sender)

OQS_KEM_encaps(kem, ciphertext, shared_secret, public_key);

// Decapsulate (receiver)

OQS_KEM_decaps(kem, shared_secret, ciphertext, secret_key);

OQS_KEM_free(kem);

3. ML-DSA Digital Signatures (FIPS 204)
ML-DSA replaces RSA/ECDSA for signing. Example using liboqs C API:

#include <oqs/oqs.h>

OQS_SIG *sig = OQS_SIG_new(OQS_SIG_alg_ml_dsa_65);

uint8_t *public_key = malloc(sig->length_public_key);

uint8_t *secret_key = malloc(sig->length_secret_key);

uint8_t *signature = malloc(sig->length_signature);

size_t sig_len;

// Generate keypair

OQS_SIG_keypair(sig, public_key, secret_key);

// Sign message

OQS_SIG_sign(sig, signature, &sig_len, message, msg_len, secret_key);

// Verify signature

OQS_SIG_verify(sig, message, msg_len, signature, sig_len, public_key);

OQS_SIG_free(sig);

4. Python Integration
Using liboqs-python wrapper:

pip install liboqs-python

import oqs

Key Encapsulation

kem = oqs.KeyEncapsulation("ML-KEM-768")

public_key = kem.generate_keypair()

ciphertext, shared_secret = kem.encap_secret(public_key)

Digital Signatures

sig = oqs.Signature("ML-DSA-65")

public_key = sig.generate_keypair()

signature = sig.sign(message)

is_valid = sig.verify(message, signature, public_key)

QRAMM | Post-Quantum Cryptography Developer Guide Page 3 of 3

qramm.org | Open Quantum Safe: openquantumsafe.org December 2024

5. Post-Quantum TLS Configuration
Configure OpenSSL 3.x with oqs-provider for PQC TLS:

openssl.cnf addition

[openssl_init]

providers = provider_sect

[provider_sect]

default = default_sect

oqsprovider = oqsprovider_sect

[oqsprovider_sect]

activate = 1

Test PQC Key Exchange

Generate PQC certificate

openssl req -x509 -new -newkey mldsa65 -keyout server.key \

 -out server.crt -nodes -subj "/CN=localhost" -days 365

Start server with hybrid key exchange

openssl s_server -cert server.crt -key server.key \

 -groups x25519_mlkem768 -www

Test client connection

openssl s_client -groups x25519_mlkem768 -connect localhost:4433

6. Implementation Best Practices

Use Hybrid Mode: Combine classical + PQC algorithms during transition (e.g., x25519_mlkem768)

Security Level Selection: ML-KEM-768 / ML-DSA-65 for most use cases (128-bit equivalent)

Key Rotation: PQC keys should follow same rotation policies as classical crypto

Performance Testing: PQC operations are larger; benchmark before production deployment

Library Updates: Stay current with liboqs releases for security patches

Developer Resources

Open Quantum Safe: openquantumsafe.org

liboqs GitHub: github.com/open-quantum-safe/liboqs

oqs-provider: github.com/open-quantum-safe/oqs-provider

NIST PQC Standards: csrc.nist.gov/projects/post-quantum-cryptography

IBM Quantum Safe: developer.ibm.com/tutorials/awb-quantum-safe-openssl

Important Note

OQS libraries are for research and prototyping. For production systems, use vendor-supported
implementations from your HSM, cloud provider, or security vendor once NIST-certified.

