QRAMM | Post-Quantum Cryptography Developer Guide Page 1 of 3

Post-Quantum Cryptography
Developer Quick Start Guide

Implementing NIST PQC Standards with Open Quantum Safe

Overview

This guide covers practical implementation of NIST post-quantum cryptography standards using
the Open Quantum Safe (OQS) project. Focus on ML-KEM (FIPS 203) for key encapsulation and
ML-DSA (FIPS 204) for digital signatures. For production, consult vendor documentation.

NIST PQC Standards Quick Reference

FIPS Algorithm Purpose OQS Name Security Levels
203 ML-KEM Key Encapsulation M_- KEM * 512, 768, 1024
204 ML-DSA Digital Signatures M_- DSA- * 44, 65, 87

205 SLH-DSA Stateless Signatures SLH- DSA- * Multiple variants

1. Environment Setup

Prerequisites (Ubuntu/Debian)

sudo apt install cmake gcc ninja-build |ibssl-dev \
pyt hon3- pyt est unzi p doxygen graphvi z

git clone https://github. con open-quantum safe/libogs. git
cd libogs & nkdir build & cd build

cmake - GNi nja - DCVAKE | NSTALL_PREFI X=/ usr/| ocal

ninja & sudo ninja install

git clone https://github.com open-quantunm saf e/ ogs- provi der.git
cd oqgs-provider && nkdir build & cd build

crmake - GNi nj a - DOPENSSL_ROOT_DI R=/ usr/ | ocal

ninja &% sudo ninja install

gramm.org | Open Quantum Safe: openquantumsafe.org December 2024

QRAMM | Post-Quantum Cryptography Developer Guide Page 2 of 3

2. ML-KEM Key Encapsulation (FIPS 203)
ML-KEM replaces RSA/ECDH for key exchange. Example using libogs C API:

#i ncl ude <oqgs/ ogs. h>

OQS_KEM *kem = OQS_KEM new(OQS_KEM al g_m _kem 768) ;

uint8_ t *public_key = nalloc(kem >l ength_public_key);
uint8_t *secret_key = nalloc(kem >l engt h_secret_key);
uint8_t *ciphertext = nmall oc(kem >l engt h_ci phertext);
uint8_t *shared_secret = mall oc(kem >l ength_shared_secret);

/| Generate keypair
OQS_KEM keypai r (kem public_key, secret_key);

/| Encapsul ate (sender)
OQS_KEM encaps(kem ci phertext, shared_secret, public_key);

/| Decapsul ate (receiver)
OQS_KEM decaps(kem shared_secret, ciphertext, secret_key);

OQS_KEM free(kem ;

3. ML-DSA Digital Signatures (FIPS 204)
ML-DSA replaces RSA/ECDSA for signing. Example using libogs C API:

#i ncl ude <oqs/ ogs. h>

OQS_SIG *sig = OQS_SI G newm(OQS_SI G al g_m _dsa_65) ;
uint8 t *public_key = malloc(sig->length _public_key);
uint8 t *secret_key = malloc(sig->length _secret_key);
uint8 t *signature = mall oc(sig->length_signature);
size_t sig_len;

/'l Generate keypair
O _SI G keypair(sig, public_key, secret_key);

/] Sign nessage
OQS_SIG sign(sig, signature, &sig_len, nessage, nsg_len, secret_key);

I/ Verify signature
O _SI G verify(sig, nessage, nsg_len, signature, sig_len, public_key);

OQS_SIG free(sig);

4. Python Integration

Using libogs-python wrapper:

pip install |ibogs-python
i nport ogs

Key Encapsul ati on

kem = ogs. KeyEncapsul ati on(" M.- KEM 768")

public_key = kem generate_keypair ()

ci phertext, shared_secret = kem encap_secret (public_key)

Digital Signatures

sig = ogs. Signature("M-DSA-65")

public_key = sig.generate_keypair()

signature = sig.sign(nessage)

is valid = sig.verify(message, signature, public_key) December 2024

QRAMM | Post-Quantum Cryptography Developer Guide Page 3 of 3

5. Post-Quantum TLS Configuration
Configure OpenSSL 3.x with ogs-provider for PQC TLS:

openssl.cnf addition
[openssl _init]
provi ders = provider_sect

[provider_sect]
default = default_sect
ogsprovi der = oqgsprovi der _sect

[ogsprovi der _sect]
activate = 1

Cenerate PQC certificate
openssl req -x509 -new -newkey nl dsa65 -keyout server.key \
-out server.crt -nodes -subj "/CN=local host" -days 365

Start server with hybrid key exchange
openssl| s_server -cert server.crt -key server.key \
-groups x25519 nil ken768 - ww

Test client connection
openssl s_client -groups x25519 _m kenv68 -connect | ocal host: 4433

6. Implementation Best Practices

Use Hybrid Mode: Combine classical + PQC algorithms during transition (e.g., x25519_mlkem768)
Security Level Selection: ML-KEM-768 / ML-DSA-65 for most use cases (128-bit equivalent)

Key Rotation: PQC keys should follow same rotation policies as classical crypto
Performance Testing: PQC operations are larger; benchmark before production deployment

Library Updates: Stay current with libogs releases for security patches

Developer Resources

Open Quantum Safe: openquantumsafe.org

libogs GitHub: github.com/open-quantum-safe/libogs

ogs-provider: github.com/open-quantum-safe/ogs-provider

NIST PQC Standards: csrc.nist.gov/projects/post-quantum-cryptography

IBM Quantum Safe: developer.ibm.com/tutorials/awb-quantum-safe-openssl

Important Note

OQS libraries are for research and prototyping. For production systems, use vendor-supported
implementations from your HSM, cloud provider, or security vendor once NIST-certified.

gramm.org | Open Quantum Safe: openquantumsafe.org December 2024

